Neuroanatomic Basis of Cognition

#### Organization of the Nervous System Gregory P. Lee, Ph.D.

# **Overview of Neuroanatomy**

- CNS cell types
- Phylogenetic/embryologic development
- Spinal cord
- Brainstem structures
- Cranial nerves
- Cerebellum
- Diencephalon =thalamus, hypothalamus

# **Overview of Neuroanatomy**

- Cortical anatomy
- Cytoarchitecture of cortex
- Limbic structures (amygdala, hippocampus)
- Basal ganglia
- Ventricular system
- Blood supply to brain

# **Complexity of Brain**

- Brain composed of > 180 billion cells
- > 80 billion of engaged in information processing
- Brain has 10 13 billion neurons
- Each cell receives up to 15,000 connections from other cells

# Neurons & Glia

 Germinal (stem) cells in embryo evolve into two types of primitive nervous system cells:

- Neuroblasts
- Spongioblasts
- "blast" is an immature cell

### Neurons & Glia

- Neuroblasts develop into neurons (nerve cells)
- Spongioblasts develop into glial cells (provide support functions to neurons)
- Neurons consist of a cell body with a dendrite on one side and an axon on the other



#### **Neuron - Examples**







# **Glial Cells**

- <u>Astroglia</u> give structural support & repair neurons.
- <u>Oligodendroglia</u> insulate & increase speed of transmission.
- <u>Schwann cells</u> oligodendrocytes of peripheral nervous system

# **Glial Cells**

 <u>Microglia</u> – perform phagocytosis (engulf foreign particles-lymphatic system's defenses)

<u>Ependymal cells</u> – line the brain's ventricles & produce cerebrospinal fluid



# Gray & White Matter

- <u>Gray matter</u> named for the color of nerve cell bodies (cortex, deep nuclei)
- <u>White matter</u> axons extend from neurons to form connections with other neurons. Insulating covering (oligodendrocytes) is composed of lipids & is white in color.

#### Gray/White Matter in Brain





# Nuclei

• In CNS, a large number of cell bodies grouped together is called a *nucleus*.

• *Nuclei* have a particular function.

 In PNS, large cell body collections are referred to as *ganglia*.

# Tracts

- Large collection of axons from a nucleus is called a *tract*
- Or fasciculi, fiber pathway
- Carries information from one place to another
- E.g., optic tract from eye to brain

# Approaches to Study of Nervous System

- **Comparative** (relative to other creatures)
- **Developmental** (changes in structure and size during individual development)
- Cytoarchitectual (architecture of cells)
- Biochemical (neurotransmitters, hormones)

# **Comparative Approach**

- Traces development of cord and brain from simple to complex creatures.
- Phyla of animals developed through stages from floating to swimming, crawling, walking, climbing, and flying.
- Brain complexity correlated with each successive behavioral development.

# **Comparative Approach**

- Much is still unknown
- E.g., *limbic system* (a middle brain layer) first developed in reptiles/amphibians
- But why is still unknown
- To control new modes of locomotion?
- Mediate new forms of social behavior?
- Support more advanced learning ability?

# **Comparative Approach**

- This approach indicates mammals differ from other animals in large size of cortex.
- Cortex is particularly large in humans.
- Cortex is thought to confer abilities unique to mammals.
- So human neuropsychology focuses on the study of the cortex.

# **Developmental Approach**

- Ontogenetic approach
- Changes in brain structure & size followed over course of development in an individual
- Individual brain development goes through the same stages as animal species do in their evolution.
- "Ontogeny recapitulates phylogeny"

# **Developmental Approach**

- Cortex & its connections are immature in newborn infants.
- Correlating developing brain changes with specific behaviors is a powerful method of uncovering
- Relations between brain structures and behavioral functions

# Cytoarchitectonic Approach

- Neuroantomists study the architecture of cells in cortex
- Differences in cell structure, size, shape, connections and distribution throughout cortex are studied
- Produce detailed cellular maps of cortex.





# **Biochemical Approach**

- Cells contain specific neurotransmitters that allow them to play their special roles intracellular communication.
- Specific neurotransmitters have been related to specific behaviors and disorders
- E.g., reduction of acetylcholine (Ach) in Alzheimer's
- Decreased dopamine (DA) in Parkinson's

# **Biochemical Approach**

- Increased dopamine (DA) psychosis
- Too little serotonin (5 HT) depression

 Identification of the types of cells and distribution of transmitters across cortex helps lead to understanding biochemical basis of behavior.





### **Development of Brain**

• Nervous system was first a spinal cord.

• Fibers from each cord segment connect to each segment of the body.

• E.g., earthworm has these organizational features.

# Cord & Brainstem in Embryo



#### A- SPINAL CORD





Prosencephalon

Mesencephalon









### **Development of Brain**

- In more complex animals, one end of the animal "goes first."
- Develops variety of receptors (nose, eyes, ears) to tell it where its going.
- A brain develops at the front end of the cord to receive this sensory information.

# **Development of Brain**

- This primitive brain developed to receive information and tell the body what to do.
- E.g., a fish's brain is representative of this stage.
- Mammalian equivalent = brainstem
- This primitive brain consists of 3 enlargements (Table 3.4, p. 53).

# Primitive (Fish) Brain

• Primitive brainstem divisions:

- **Prosencephalon** ("front brain")
- *Mesencephalon* ("middle brain")

• *Rhombencephalon* (hindbrain)

#### **Brainstem in Primitive Brain**



A: SPINAL CORD



B BRAINSTEM

Prosencephalon



Mesencephalon



Rhombencephalon
- In mammals, prosencephalon develops to form the
- Telencephalon (endbrain) and
- Diencephalon (between-brain)
- Midbrain (mesencephalon) stays the same

 Back part of primitive brain (rhombencephalon) becomes:

• Metencephalon (across-brain) and

• Myelencephalon (spinal brain)





- TELENCEPHALON is composed of:
- Neocortex
- Basal ganglia
- Limbic system
- Olfactory bulb
- Lateral ventricles

• DIENCEPHALON is composed of:

- Thalamus
- Epithalamus (pineal body)
- Hypothalamus
- Third ventricle

- MESENCEPHALON is composed of:
- Tectum
- Tegmentum
- Cerebral aqueduct

- METENCEPHALON is composed of:
- Cerebellum
- Pons
- Fourth ventricle
- MYELENCEPHALON is composed of:
- Medulla oblongata
- Fourth ventricle





## **Orientation of Structures**

- Superior (top)
- Lateral (side)
- Medial or mesial (middle)
- Ventral (towards the belly or s.t.'s bottom)
- Dorsal (towards the back or s.t.'s top)
- Anterior (front)
- Posterior (back)

# Planes of the Body

 Midsagittal – the plane vertically dividing the body through the midline into right and left halves.

 Sagittal – any plane parallel to the midsagittal line dividing the body into right and left portions.

## Planes of the Body

 Transverse (horizontal) – any plane dividing the body into superior and inferior portions.

 Coronal (frontal) – any plane dividing body into anterior and posterior portions; at right angle to sagittal plane.



### Mid-Saggital View of Brain



#### **Transverse View of Brain**



#### **Coronal View of Brain**





### **Orientation of Structures**

 Ipsilateral – when two structures lie on the same side.

Contralateral – if they lie on opposite sides.

• *Bilateral* – if one is on each side.

### **Orientation of Structures**

- **Proximal** structures that are close to one another; also closer to the midline of body.
- **Distal** structures that are far away from one another; also ones that are farther away from midline
- *Afferent* an approaching pathway
- *Efferent* pathway that is traveling away from

# **Spinal Cord**

- Tube of nerve cells divided into segments.
- Each segment receives fibers from sensory receptors of the part of the body adjacent to it
- And sends back fibers to muscles in that part of the body.

### Dermatomes

- Area of skin supplied with sensory (afferent) nerve fibers by a single spinal segment.
- Dermatomes encircle the body in a ring formation.
- Distorted in humans due to upright posture – imagine humans down on all fours.



### CNS & PNS

 Central Nervous System (CNS) = brain and spinal cord

 Peripheral Nervous System = 12 cranial nerves and 31 pairs of spinal nerves.

#### CNS & PNS



# **Spinal Nerves**

- 31 pairs of spinal nerves:
- 8 Cervical (C)
- 12 Thoracic (T)
- 5 Lumbar (L)
- 5 Sacral (S) and 1 Coccygeal
- Cord segments connect with body dermatomes of the same number.

### **Dorsal Root**

- Fibers entering the dorsal portion of spinal cord carry information from sensory receptors.
- As fibers approach cord, they collect together
- This collection is called the *dorsal root*.
- Dorsal root = sensory



# Ventral Root

- Fibers leaving the ventral (anterior) portion of cord carry information from spinal cord to muscles
- Form the *ventral root*.

• Ventral root = motor





# Composition of Cord

• Outer portion of cord consists of white matter or tracts.

 Inner portion consists of gray matter, composed of nerve cell bodies.



#### Spinal Cord – Cross Section



# **Bell-Magendie Law**

- Charles Bell Scottish neurophysiologist
- Francois Magendie French physiologist
- Cutting dorsal root caused loss of sensation.
- Cutting ventral root caused loss of motor function.
- Entire nervous system organized in this fashion.

# **Dermatomes of Internal Organs**

- Organs (liver, kidney, heart, lungs) in the body are also arranged segmentally
- Organs have no sensory representation in brain.
- Pain in organs is felt within the body portion of the dermatome it is represented in
### **Referred Pain**

- Pain that is felt in a body part away from the site of disease or injury.
- E.g., pain originating from heart is felt in the left shoulder and left arm.
- E.g., kidney pain is felt in the back.
- Brain interprets pain as coming from the spinal segment the organ enters.

# Spinal Cord Motor Defects

 If spinal cord is cut in its lower portions (lumbar, sacral), patient loses control over legs – called *paraplegia*.

 If cord is cut at higher levels (cervical) so patient loses control over both legs and arms – called *quadriplegia*

# Spinal Reflex Arc

- Pinprick damages skin and stimulates pain receptors;
- Stimulated receptor activates a pain neuron which conducts information to cord;
- Pain fibers activate interneurons in cord;
- Interneurons activate motor neurons to muscle;
- Muscle contracts and flexes limb.



# Withdrawal Reflexes

- Reflex is proportional to intensity of stimulus.
- Small pain = movement of finger or hand toward body
- Large pain = movement of entire limb bringing it toward the body.
- Stimulation of pain & temperature receptors cause flexor withdrawal reflex.

#### **Extensor Reflexes**

- Tactile stimulation activates tactile & pressure receptors;
- These neurons stimulate interneurons in the cord and the motor neurons then cause the limb to extend.
- Stimulating fine (discriminative) touch and pressure receptors produce extensor movements move limb away from body.

### **Brain Stem**

- HINDBRAIN
  - Medulla Oblongata
  - Pons
  - Cerebellum

MIDBRAIN (Mesencephalon)

#### **Brainstem Structures**





## Brainstem

- Sensory (afferent) fibers from spinal cord on way to thalamus pass through here.
- Motor (efferent) fibers from cortex pass through on way to anterior horn of cord.
- Brainstem packed with fibers and cranial nerve nuclei;
- So even small lesions have large effects.

# **Reticular Activating Center**

- Located in central core of brainstem in midbrain, pons, & superior medulla.
- Maintenance of consciousness
- Controls sleep and wakefulness
- Controls arousal levels
- Composed of many different brainstem nuclei

# Midbrain

- Mesencephalon two subdivisions
- Tectum (roof) above cerebral aqueduct
- Tegmentum (floor) below aqueduct
- Tectum contains 2 sets of bilaterally symmetrical nuclei:
  - Superior colliculi (upper hills)
  - Inferior colliculi (lower hills)



# Midbrain

- Superior colliculi receives input from retina; mediates visual behaviors.
- Inferior colliculi input from ear; mediates auditory-related behaviors.
- Tegmentum contains some cranial nerve nuclei (primarily motor), substantia nigra, and the VTA.





# **Cranial Nerves**

- 12 sets of nerves lying within brainstem
- Sensory information from specialized sensory systems of head to brain
- Control of muscle movement of head
- Important for neurological diagnosis and localization of lesion



# **Cranial Nerves Function**

- I = Olfactory Smell
- II = Optic Vision
- III= Occulomotor Eye movement / pupil constriction
- IV= Trochlear Eye movement
- V = Trigeminal –Face sensation / jaw movement
- VI = Abducens Eye movement

## **Cranial Nerves Function**

- VII = Facial Facial movement
- VIII= Cochleo-Vestibular Hearing/ Equilibrium
- IX = Glossopharyngeal Taste / Pharynx
- X = Vagus Heart, vessels, viscera / movement of larynx & pharynx
- XI = Spinal Accessory Neck muscles
- XII = Hypoglossal Tongue muscles

### Sensory Cranial Nerve Nuclei



### Motor Cranial Nerve Nuclei



#### Cardiac & Respiratory Centers



### **Cranial Nerves**

- Will be discussed in detail when the motor system is presented in Chapter 9
- Symptoms of dysfunction of the cranial nerves
- And methods to examine cranial nerve function will be presented at that time.

#### Cerebellum

- <u>3 major streams of input into cerebellum</u>
- From Cortex
- From Vestibular apparatus
- From body via spinal cord

#### Cerebellum



# **Functions of Cerebellum**

- Major part of cerebellum receives input from cortex = controls skilled movements.
- Other portions receives input from vestibular system = maintain body's equilibrium.
- Parts that receive input from body senses = postural reflexes & coordinating related muscle groups.

# **Cerebellar Anatomy**

- Surface has many narrow folds called folia
- Cortex of gray matter covers larger area of white matter
- Several nuclei lie within white matter.
- Connected to brainstem via 3 major fiber pathways – *inferior, middle & superior cerebellar peduncles*.





# Effects of Cerebellar Damage

 Damage causes impairments of equilibrium & skilled motor activity & postural defects.

 Smooth movement broken into jerky, sequential components;